Part Number Hot Search : 
ZUR55W TFS110W DG413 B16NS25 24AA0 18000 FM1608B B14101ZB
Product Description
Full Text Search
 

To Download IRFB7440G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet gds gate drain source fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature benefits improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters v dss 40v r ds(on) typ. 2.0m max. 2.5m i d 208a i d (package limited) 120a 25 50 75 100 125 150 175 t c , case temperature (c) 0 40 80 120 160 200 240 i d , d r a i n c u r r e n t ( a ) limited by package 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 100a t j = 25c t j = 125c d s g to-220ab IRFB7440Gpbf s d g d  halogen-free 
     
    
   !
 "#  form quantity IRFB7440Gpbf to-220 tube 50 IRFB7440Gpbf base part number package type standard pack complet e par t number downloaded from: http:///
 
    
   !
 "#  
    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 120a. note that curre nt limitations arising from heating of the device leads may occur with some lead mounting arrangements. 
    repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.048mh, r g = 50 , i as = 100a, v gs =10v.  i sd 100a, di/dt 1330a/ s, v dd v (br)dss , t j 175c.   pulse width 400 s; duty cycle 2%.   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  r is measured at t j approximately 90c.
 limited by t jmax starting t j = 25c, l= 1mh, r g = 50 , i as = 34a, v gs =10v. static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 0.035 CCC v/c r ds(on) static drain-to-source on-resistance CCC 2.0 2.5 m CCC 3.0 CCC m v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 2.6 CCC conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5.0ma v gs = 10v, i d = 100a  v gs = 6.0v, i d = 50a  v ds = v gs , i d = 100 a v gs = 20v v gs = -20v v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj e as (thermally limited) single pulse avalanche energy  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 0.72 r cs case-to-sink, flat greased surface 0.50 CCC r ja junction-to-ambient CCC 62 c/w a c 300 238 see fig. 14, 15, 22a, 22b 208 max. 208  147  772 120 560 -55 to + 175 20 1.4 10lbf  in (1.1n  m) downloaded from: http:///
 
    
   !
 "#  
 s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 88 CCC CCC s q g total gate charge CCC 90 135 nc q gs gate-to-source charge CCC 23 CCC q gd gate-to-drain ("miller") charge CCC 32 CCC q sync total gate charge sync. (q g - q gd ) CCC 58 CCC t d(on) turn-on delay time CCC 24 CCC ns t r r i s e t i m e C C C6 8C C C t d(off) turn-off delay time CCC 115 CCC t f fall time CCC 68 CCC c iss input capacitance CCC 4730 CCC pf c oss output capacitance CCC 680 CCC c rss reverse transfer capacitance CCC 460 CCC c oss eff. (er) effective output capacitance (energy related) CCC 845 CCC c oss eff. (tr) effective output capacitance (time related) CCC 980 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current CCC CCC 208 a (body diode) i sm pulsed source current CCC CCC 772 a (body diode)  v sd diode forward voltage CCC 0.9 1.3 v dv/dt peak diode recovery  CCC 6.8 CCC v/ns t rr reverse recovery time CCC 24 CCC ns t j = 25c v r = 34v, C C C2 8C C C t j = 125c i f = 100a q rr reverse recovery charge CCC 17 CCC nc t j = 25c di/dt = 100a/ s  C C C2 0C C C t j = 125c i rrm reverse recovery current CCC 1.3 CCC a t j = 25c t j = 25c, i s = 100a, v gs = 0v  integral reverse p-n junction diode. mosfet symbol showing the conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz t j = 175c, i s = 100a, v ds = 40v i d = 100a i d = 30a r g = 2.7 v gs = 10v  v dd = 20v i d = 100a, v ds =0v, v gs = 10v conditions v ds = 10v, i d = 100a v gs = 0v, v ds = 0v to 32v  v gs = 0v, v ds = 0v to 32v  v ds =20v downloaded from: http:///
 
    
   !
 "#  
 fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a downloaded from: http:///
 
    
   !
 "#  
 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 100 200 300 400 500 600 700 800 i d , drain current (a) 0 10 20 30 40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 5.5v v gs = 6.0v v gs = 7.0v v gs = 8.0v v gs =10v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5.0ma 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 e n e r g y ( j ) v ds = 0v to 32v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc limited by package downloaded from: http:///
 
    
   !
 "#  
 fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) downloaded from: http:///
 
    
   !
 "#  
  $ %&'  !& ( !   ) fig 17. threshold voltage vs. temperature 
$ %&'   (* !   )  $ %&'  !& ( !   )   $ %&'   (* !   ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 1 2 3 4 5 6 7 8 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 1 2 3 4 5 6 7 8 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 40 50 60 70 80 90 100 110 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c downloaded from: http:///
 
    
   !
 "#  
 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. +    !& !) % ( for n-channel hexfet  power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period ,   

 , + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&# 

     d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %       !"!#!  + -     downloaded from: http:///
$ 
    
   !
 "#  
 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ 
     
     

 

 
  to-220ab packages are not recommended for surface mount application. example: this is an irfb4310gpbf note: "p" in as sembly line position indicates "lead - free" int ernat ional part number rectifier lot code as s e mb l y logo y= las t digit of dat e code : ww= wor k we e k x = f act or y code note: "g" s uffix in part number i ndi cates "h al ogen - f r ee" cal e ndar ye ar downloaded from: http:///
 
    
   !
 "#  
 - .           /  0 '0))
)' $ )&) -- 1'' !   233(    
  '   qualification level moisture sensitivity level to-220 not appl i cabl e rohs compliant (per jedec jesd47f ?? guidelines) yes qualification information ? industrial 
 






  
! " 
#$%&
'( )
  
*    
+" 
 

,-- " -  . - revision history date comment ? updated data sheet with ir corporate template. ? updated e as (l =1mh) = 560mj on page 2 ? updated note 9 limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 , i as = 34a, v gs =10v. on page 2 ? updated package outline on page 9. 11/19/2014 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFB7440G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X